Dynamic Macroeconomics
PhD Economics
Job matching and unemployment dynamics
(answers)

January 2015

PROBLEM 1. The wage rate is exogenously fixed by assumption. Therefore, the \(W \) function is simply:

\[
W = \bar{w}
\]

The job creation condition is:

\[
y - w = (r + s) \frac{c}{q(\theta)} \quad \text{(JC)}
\]

with \(q(\theta) \equiv \frac{p(\theta)}{\theta}, \quad q'(\theta) < 0 \)

and \(p(\theta) = \frac{m}{u}, \quad p'(\theta) > 0; \quad \theta \equiv \frac{v}{u} \)

Assume that the matching function is Cobb-Douglas:

\[
m(u, v) = u^\alpha v^{1-\alpha}
\]

\[
p(\theta) \equiv \frac{m(u, v)}{u} = u^\alpha v^{1-\alpha} = \left(\frac{v}{u}\right)^{1-\alpha} = \theta^{1-\alpha}
\]

\[
\eta \equiv \frac{p'(\theta)}{p(\theta)} \cdot \theta = (1 - \alpha)\theta^{-\alpha} \cdot \theta = \frac{(1 - \alpha)\theta^{1-\alpha}}{\theta^{1-\alpha}} = 1 - \alpha
\]

constant and not depending on \(\theta \), where

- \(\theta \equiv \text{measure of "tightness" of the labour market} \)
- \(p(\theta) \equiv \frac{m}{u} = \text{probability of a match for the unemployed} \)
- \(q(\theta) \equiv \frac{p(\theta)}{\theta} = \text{probability of a match for a firm} \)
If $\theta \uparrow$, with y, r, and s constant, w should decrease in order for the equality above (JC) to hold. Therefore, there exists a negative correlation between w and θ.

Given $\overline{\theta}$, we can associate to each value of the unemployment rate only one value of v compatible with $\overline{\theta}$.

The slope of this line is given by $\overline{\theta}$. The line $v = \overline{\theta} \cdot u$ is obtained combining W with JC (which, together, determine $\overline{\theta}$). Consider now the Beveridge Curve:

$$u = \frac{s}{s + p(\theta)}$$

from which

$$p(\theta) = \frac{s(1 - u)}{u}$$

Take:

$$\frac{\partial p(\theta)}{\partial u} = -\frac{s}{u^2} < 0$$
when u increases, $p(\theta)$ decreases $\implies \theta \downarrow$ (given that $p'(\theta) > 0$). u and θ are negatively correlated. The Beveridge curve defines the level of vacancies (\bar{v}) that corresponds to the pair ($\bar{\theta}$, \bar{u}). Since $\theta = \frac{1}{v}$ and $\theta'(v) = \frac{1}{v^2} > 0$, a reduction in v implies a reduction in θ. v and θ are positively correlated. Conclusion: v and u are negatively correlated along the BC

Assume that:

$\Delta y < 0 \implies y \downarrow$ an aggregate shock.

BC:

$u = \frac{s}{s + p(\theta)}$ remains unchanged

W:

$W = \bar{w}$ remains unchanged

JC:

$y - w = (r + s) \frac{c}{q(\theta)}$ does change

If $y \downarrow$, the LHS \downarrow. For the RHS to decrease in order for the equality to continue to hold, with given w, r, s, and c, $q(\theta)$ must increase, which implies a decrease in θ (since $q'(\theta) < 0$). With W constant and θ decreasing, JC shifts downwards - since $\theta \downarrow$ the slope of JC + W decreases as well. In sum: θ decreases from $\bar{\theta}$ to $\bar{\theta}_1$, with $\bar{\theta}_1 < \bar{\theta}$. u increases and v decreases. W remains constant at the fixed level w.
Intuitively, a reduction in labor productivity reduces the expected profits of a filled job. Hence, firms have an incentive to open less vacancies, with an increase in the unemployment rate and a decrease in θ.

Suppose now that:

$\Delta s > 0 \implies s \uparrow$ sectoral shock

W:

$W = \bar{w}$ remains unchanged

JC:

$y - w = (r + s) \frac{c}{q(\theta)}$ does change

If $s \uparrow$, the RHS \uparrow. With y, w, r, and c given, $q(\theta)$ must increase for the equality to continue to hold. $\implies \theta \downarrow$, with $q'(\theta) < 0$. With w given and θ decreasing, JC shifts downwards and the $(JC + W)$ curve has a lower slope. Notice that:

$BC \rightarrow u = \frac{s}{s + p(\theta)}$

$\frac{\partial u}{\partial s} = \frac{p(\theta)}{(s + p(\theta))^2} > 0$

If $s \uparrow \implies p(\theta) \uparrow \implies \theta \uparrow \implies v \uparrow$, since $\theta'(v) = \frac{1}{u} > 0$, u given. If, with u given, $v \uparrow$, then the BC shifts outwards.
In this case:
- w remains unchanged
- θ decreases from $\bar{\theta}$ to $\bar{\theta}_1$, $\bar{\theta}_1 < \bar{\theta}$.
- u increases unambiguously
- The effect on v is ambiguous

An increase in s increases \dot{u}:

$$\dot{u} = s(1 - u) - p(\theta)u$$

and makes the market tightness (θ) lower. The effect on the firms’ willingness to open new vacancies is ambiguous

PROBLEM 2 The two dynamic equations of interest are:

$$\dot{u} = s(1 - u) - p(\theta)u$$

for the unemployment rate, and

$$\dot{\theta} = \frac{r + s}{1 - \eta} \cdot \theta - \frac{p(\theta)}{c(1 - \eta)}(y - \bar{w})$$

for the degree of tightness of the labour market. η is defined as:

$$\eta \equiv \frac{p'(\theta) \cdot \theta}{p(\theta)}$$

For simplicity, assume η constant and not depending on θ. (as is the case for a Cobb-Douglas type matching function). The $\dot{u} = 0$ locus:

$$\dot{u} = 0 \implies p(\theta) = \frac{s(1 - u)}{u}, \quad \theta \equiv \frac{v}{u}$$
Take:

\[\frac{\partial p(\theta)}{\partial u} = \frac{-s}{u^2} < 0 \]

when \(u \) increases, with \(s \) given, \(p(\theta) \) decreases. Since \(p'(\theta) > 0 \implies \theta \downarrow \implies \) negative correlation between \(\theta \) and \(u \) along the \(\dot{u} = 0 \) locus. The \(\dot{\theta} = 0 \) locus:

\[\dot{\theta} = 0 \implies \frac{r + s}{1 - \eta} \cdot \theta = \frac{p(\theta)}{c(1 - \eta)} (y - \bar{w}) \]

In the \(\dot{\theta} = 0 \) locus there is no independent role for \(u \) - it depends only on \(\theta \). In other words, the locus \(\dot{\theta} = 0 \) appears graphically as a horizontal line in the space \((\theta, u)\) at the steady-state value \(\bar{\theta} \).

Given \(\theta \) we can find out the unique value for the unemployment rate \((\bar{u}) \) compatible with \(\theta \).

\[\frac{\partial p(\theta)}{\partial u} = \frac{-s}{u^2} < 0 \]

when \(u \) increases, with given \(s \), \(p(\theta) \) decreases. This implies a reduction in \(\theta \), since \(p'(\theta) > 0 \). But since:

\[\theta = \frac{v}{u}, \quad \theta'(v) > 0 \implies v \downarrow \]

In sum, when \(u \uparrow \) then \(v \downarrow \implies \) negative correlation between \(v \) and \(u \) along the \(\dot{u} = 0 \) locus.
Dynamics:
1.
\[
\frac{\partial \dot{u}}{\partial u} = -s - [-p'(\theta) \cdot u \cdot \frac{v}{u^2} + p(\theta)] \\
= -s + p'(\theta)\theta - p(\theta)
\]
Divide both sides by \(p(\theta) \):

\[
\frac{\partial \dot{u}}{\partial u} / p(\theta) = -\frac{s}{p(\theta)} + \eta - 1 < 0, \quad 0 \leq \eta \leq 1
\]

\[\Rightarrow \frac{\partial \dot{u}}{\partial u} < 0 \quad \text{stable locus}\]

2. It is possible to show that:

\[\frac{\partial \dot{\theta}}{\partial \theta} > 0 \quad \text{unstable locus}\]
Given \(\bar{\theta} \) and \(\bar{u} \), we can determine uniquely the value of \(v \) (\(\bar{v} \)) compatible with \(\bar{\theta} \).

The system converges towards the equilibrium \((\bar{v}, \bar{u})\), along the \(\dot{\bar{\theta}} = 0 \) locus.

Consider an *anticipated future increase* in the exogenous wage rate: \(\bar{w} \uparrow \).

Consider the two loci:

\[
\dot{u} = 0 \implies p(\theta) = \frac{s(1 - u)}{u} \text{ does not change}
\]

\[
\dot{\bar{\theta}} = 0 \implies \frac{r + s}{1 - \eta} \cdot \bar{\theta} = \frac{p(\bar{\theta})}{c(1 - \eta)}(y - \bar{w})
\]

when \(\bar{w} \) increases, the RHS decreases. With \(r, s, \eta, c \) and \(y \) given, the only way for the LHS to decrease (and to keep equating the RHS) is to reduce \(\bar{\theta} \). In sum:

\[
\bar{w} \uparrow \implies \bar{\theta} \downarrow
\]

the \(\dot{\bar{\theta}} = 0 \) locus shifts downwards.
The saddle path is represented by the $\dot{\theta} = 0$ locus. The jump variables are v and θ: in response to changes in the exogenous parameters, v and θ exhibit discrete changes. The state variable is u, which adjusts gradually to changes in θ.

At t_0 firms anticipate the future increase in the wage rate \bar{w} and immediately reduce the number of vacancies: v and θ fall by a discrete amount. Between t_0 and t_1, the dynamics are governed by the differential equations associated with the initial steady-state (E_0). v and θ continue to decrease (while the unemployment rate increases) until they reach the new saddle path at t_1. From t_1 onwards, u and v increase in the same proportion, leaving θ unchanged.